Home Радиотехника Типовые схемы компенсационных стабилизаторов напряжения на транзисторах
Радиотехника

Типовые схемы компенсационных стабилизаторов напряжения на транзисторах

схемы компенсационных стабилизаторов напряжения на транзисторахНаиболее широкое практическое применение находят компенсационные последовательные стабилизаторы напряжения. Типовая схема такого стабилизатора приведена на рис. 1. В зависимости от величины тока нагрузки регулирующий транзистор может быть составным (как показано на рис. 1) или одиночным.

Основными недостатками типовой схемы являются низкий коэффициент стабилизации и довольно большие пульсации на выходе стабилизатора.

Последнее особенно сильно проявляется при больших токах нагрузки. Это объясняется тем, что база регулирующего транзистора питается от нестабилизированного источника. Увеличение емкости конденсатора C1 уменьшает пульсации лишь тогда, когда эта емкость будет равна не скольким тысячам мкф, что практически трудно реализовать.

Качество стабилизатора существенно улучшится, если базовую цепь регулирующего транзистора питать от стабилизированного источника или источника с малым напряжением пульсаций переменного тока. Ниже рассматривается несколько вариантов улучшения стабилизатора по этому принципу.

На рис. 2 приведена схема стабилизатора со сглаживающим фильтром в базовой цени регулирующего транзистора. В этом стабилизаторе резистор R5 заменен двумя - R5`R5" добавлен конденсатор С2. Так как ток, протекающий через этот фильтр, весьма мал, то даже при емкости С2 в несколько десятков мкФ пульсации на базе регулирующего транзистора, а следовательно, и на выходе стабилизатора существенно уменьшаются. Следует иметь в виду, что сумма сопротивлений резисторов R5` и R5" должна быть равна сопротивлению резистора R5 на схеме рис. 1.

В стабилизаторе, схема которого показана на рис. 3, для питания цепей баз регулирующего транзистора и транзистора усилителя обратной связи применен стабилизирующий трехполюсник. Этот стабилизатор позволяет отказаться от применения составного регулирующего транзистора при значительных токах нагрузки. В стабилизирующем трехполюснике используется n-р-n транзистор, напряжение на базе которого стабилизировано с помощью диода Д2. В качестве диода Д2 могут быть использованы кремниевые стабилитроны, которые имеют напряжение стабилизации в прямом направлении порядка 0,5В. Поскольку напряжение перехода база — эмиттер транзистора стабилизировано, ток Iк2, коллектора транзистора Т2 не меняется при изменении входного напряжения Uвх и при наличии пульсаций на входе.

Базовые цепи регулирующего транзистора и транзистора усилителя обратной связи в стабилизаторе, схема которого дана на рис. 4, питаются от стабилизированного источника. При больших токах нагрузки мощность рассеяния на регулирующем транзисторе этого стабилизатора резко увеличивается. Поэтому применение его целесообразно лишь при сравнительно небольших токах нагрузки (до 0,3—0,5A).

На рис. 5 изображена схема стабилизатора, качество работы которого улучшено применением транзистора Т2 типа n-р-n взамен р-n-р в стабилизаторе по схеме рис. 1 и изменением места включения опорного стабилитрона. Нетрудно видеть, что колебания входного напряжения поступают на эмиттерные переходы всех транзисторов только через достаточно большие сопротивления коллекторных переходов, и таким образом, дестабилизирующее влияние источника питания на стабилизатор существенно уменьшается.

 



 

В стабилизаторе, схема которого приведена на рис. 6, применены регулирующий и усилительный транзисторы разных типов проводимости. Особенностью стабилизатора является то, что регулирующий транзистор подключен к положительному полюсу стабилизируемого напряжения. Так как коллекторный ток усилительного транзистора и базовый ток регулирующего транзистора направлены согласованно, отпадает необходимость в специальном нагрузочном резисторе и источнике вспомогательного напряжения, а также значительно упрощается согласование режимов транзисторов. Роль нагрузки усилительного каскада здесь играет весьма значительное по величине сопротивление коллекторного перехода регулирующего транзистора. При выполнении стабилизатора по этой схеме можно обойтись без применения в регулирующем элементе составного транзистора до токов нагрузки 300—500 мА.

Все стабилизаторы напряжения, описанные в статье, испытывались при токе нагрузки Iн—300 мА и выходном напряжении Uн=15 в. Во время испытаний стабилизаторы питались от выпрямителя, собранного по мостовой схеме без сглаживающего фильтра.

В заключение следует отметить, что коэффициент стабилизации всех схем, приведенных выше, можно повысить увеличением доли выходного напряжения, действующей на усилитель обратной связи стабилизатора. С этой целью необходимо увеличивать значение коэффициента n=R2/R1+R2 (для схемы рис. 1), что возможно путем выбора опорного напряжения, близкого к значению Uн. Другим путем является замена резистора R1 (см. рис. 1) таким стабилитроном (показан пунктиром), чтобы Uст. Д1+Uст.Д2≈Uн. Такая замена позволяет увеличить коэффициент стабилизации стабилизатора по схеме рис. 1 с 20 до 50.

 

 

Ознакомиться с основными характеристиками и цоколевкой интегральных микросхем стабилизаторов напряжения можно на страницах нашего сайта:

Справочная информация по интегральным стабилизаторам напряжения AN серии
Справочная информация по интегральным стабилизаторам напряжения MC серии
Справочная информация по интегральным стабилизаторам напряжения LM серии