Home Ремонт бытовой техники Статьи Якорь электродвигателя автомобильного стартера, устройство и принцип работы

Якорь электродвигателя автомобильного стартера, устройство и принцип работы

Якорь электродвигателя автомобильного стартера

Рис. 1. Роторный узел стартера BOSCH-DW: 12/1.1. 1 — первичный вал (вал электродвигателя); 2 — ламельный коллектор; 3 — якорная обмотка; 4 — магнитопровод якоря; 5 — продольная балансировочная выборка; 6 — паз якорного магнитопровода; 7 — фиксатор планетарной шестерни; 8 — ведущая шестерня планетарного редуктора (на валу электродвигателя); 9 — неподвижная планетарная шестерня; 10 — поводковая муфта; 11 — муфта свободного хода (МСХ); 12 — шестерня МСХ; 13 — проточка под запорное пружинное кольцо; 14 — крышка запорного пружинного кольца; 15 — запорное пружинное кольцо; 16 — вторичный (выходной) вал стартера.

Якорь электродвигателя стартера BOSCH-DW: 12/1.1 является составной частью роторного узла (рис. 1). Якорь состоит из магнитопровода 4, рабочей якорной обмотки 3, ламельного коллектора 2 и вала вращения 1.

Магнитопровод собран из 64 магнито-мягких пластин толщиной 0,46 мм, изолированных друг от друга лаком, спрессованных и склеенных в единое цельное тело. В магнитопровод запрессован вал 1 вращения, на одном конце которого нарезано 11 зубцов ведущей шестерни 8, а на другом установлен 28-ламельный коллектор 2. Магнитопровод якоря имеет 28 пазов 6, расположенных точно напротив ламелей.

В каждый паз магнитопровода вложено по два токопроводящих стержня рабочей обмотки, которые таким образом образуют двухстержневую (парную) полурамку. Каждый стержень — это половина U-образного витка, изогнутого по шаблону и вложенного в пазы якорного магнитопровода с лобной стороны в сторону коллектора. На ламелях концы U-образ-ных витков попарно свариваются контактной электросваркой, при этом на якоре образуется 28 якорных рамок, соединенных последовательно и замкнутых в кольцо.

Последовательность подсоединения витков якорной обмотки к ламелям коллектора

Рис. 2. Последовательность подсоединения витков якорной обмотки к ламелям коллектора (стартер BOSCH-DW: 12/1.1): 1...28 -номера ламелей (коллектор развернут); желтый цвет — щетки КЩМ в положении якоря на рис. 3; красный и синий цвет — зоны действия южного и северного полюсов статорных магнитов; « • » — стержни якорных витков.

U-образные витки уложены в пазы за пять обходов по окружности якоря. На рис. 2 схематически показана последовательность подсоединения U-образных витков к коллекторным ламелям при первом (сплошные линии) и втором (штриховые) обходах окружности якоря. Из рисунка очевиден порядок сборки якорной обмотки:

 

  • первая волна — задействованы ламели 1-6-11-16-21-26-3;
  • вторая волна — ламели 3-8-13-18-23-28-5;
  • третья волна — ламели 5-10-15-20-25-2-7;
  • четвертая волна - ламели 7-12-17-22-27-4-9;
  • пятая волна — задействованы ламели 9-14-19-24-1.

 

Ясно, что начало первого витка и конец последнего 28-го коротко-замкнуты на одну (условно первую) ламель коллектора, так как они уложены в один (условно первый) паз якорного магнитопровода.

Таким образом из 28 U-образных токопроводящих круговых рамок складывается последовательная волновая коротко-замкнутая пятиобходная якорная обмотка на якоре барабанного типа.



Схема электрических и магнитных цепей стартера

Рис. 3. Схема электрических и магнитных цепей стартера BOSCH-DW: 12/1.1

Следует заметить, что в данном случае число якорных рамок, равное 28, не кратно числу статорных полюсов, которых шесть. Здесь важно другое: при любой конструкции барабанного якоря ширина каждой его токопроводящей рамки должна быть равна ширине полюсного деления на статоре (полюсное деление n — расстояние между центрами соседних разноименных магнитных полюсов, см. рис. 3). Этим обеспечивается наибольшее пото-косцепление между магнитным полем статора и витками якорной обмотки, чем в свою очередь достигается максимальный КПД электродвигателя. В конструкции стартера BOSCH-DW: 12/1.1 сказанное достигается охватом одной токопроводящей рамкой сразу четырех якорных полюсов. Так как четыре якорных полюса по ширине совпадают с шириной одного полюса на статоре, то потокосцепление полное.

Еще одной особенностью конструкции якоря является то, что четыре несимметрично расположенных щетки коллекторно-щеточного механизма делят обмотку якоря на четыре ветви, не равных по числу витков. При этом электрическая схема включения ветвей получается такой, как показано на рис. 3.

Из рисунка видно, что рабочий ток якоря протекает по ветвям а b и с d, в каждой из которых по четыре витка. Таким образом, во время работы электродвигателя под рабочим током якоря находится только 8 стержней из 56 или 4 рамки из 28. Остальные рамки в формировании крутящего момента электродвигателя участия не принимают до тех пор, пока при повороте якоря их положение не станет рабочим.

Для каждого рабочего положения рамок создается момент вращения электродвигателя стартера: Мст= 8FR, где 8 — число стержней, включенных в работу; F — сила электромагнитного взаимодействия электрического тока якоря и магнитного поля статора; R — средний радиус якорной рамки.

Во время работы электродвигателя происходит переключение витков якорной обмотки с помощью коллекторно-щеточного механизма.

Щетки относительно магнитной системы статора и внешней электрической цепи всегда неподвижны. Это обеспечивает постоянство крутящего момента электродвигателя как по направлению, так и по величине. Максимальный крутящий момент электродвигателя в заторможенном стартере BOSCH-DW:12/1.1 около 15 Нм.



Еще одной интересной особенностью описываемого стартерного электродвигателя является наличие на его статоре «неработающих» постоянных магнитов. Действительно, как следует из положения якоря, показанного на рис. 3 под полюсами N1 и S3, витки якорной обмотки в секциях (28...20) и (14...6) короткозамкнуты соединительными проводами Б+ и Б- между щетками ad и cb. Ясно, что закороченные секции якорной обмотки нерабочие. Казалось бы, можно допустить, что и полюса N1 и S3 нерабочие. Однако магнитная система статора рассчитана и сконструирована таким образом, что эти полюса выполняют три рабочие функции: обеспечивают равномерное распределение главного магнитного поля по всему круговому периметру воздушного зазора между статорными магнитами и магнитопроводом якоря; оптимизируют положение физической нейтрали магнитного поля якоря относительно щеток коллекторно-щеточного механизма и, таким образом, являются компенсационными (дополнительными) полюсами; уменьшают противоэлектродвижущую силу на щетках, улучшая коммутацию. В этой связи сами щетки несколько развернуты (на угол 12°) относительно геометрической нейтрали статорных полюсов в сторону против вращения якоря.

И последнее. Якорь современного электростартера обязательно точно балансируется. Эта технологическая операция стала необходимой, так как электродвигатель стартеров нового поколения высокооборотистый. Балансировку реализуют проточкой якоря после того, как он окончательно собран и залит эпоксидным компаундом. Точная доводка балансировки осуществляется с помощью продольных выборок на полюсах якорного магнитопровода (см. рис. 1). Выборки прорезаются алмазным кругом.

 

Продолжение: Планетарный редуктор автомобильных стартеров, устройство и принцип работы